Начертательная геометрия

Пересечение прямого кругового цилиндра с поверхностью пирамиды.

На рис 17 показано пересечение цилиндра и правильной шестиугольной пирамиды. Сначала определяется на каких проекциях нужно строить линию пересечения. Затем определяют характерные точки. Дополнительные точки строятся с помощью вспомогательных горизонтальных плоскостей.

Раздел 5 Взаимное пересечение поверхностей двух тел вращения.

5.1 Пересечение поверхностей цилиндров.

Построение линии пересечения цилиндров начинают со сравнения их оснований. На рис. 18 изображены три вертикальных цилиндра (А,Б,В) разных диаметров, которые пересекаются с половиной горизонтального цилиндра.

Рассмотрим, какая получается линия пересечения в зависимости от соотношения диаметров цилиндров. Если пересекаются два цилиндра разных диаметров, то линия их пересечения представляет собой кривую, кривизна которой зависит от разности диаметров. Чем больше разность, тем меньше кривизна, и наоборот. При этом изгиб кривой всегда идет в сторону большего диаметра, так как цилиндр с меньшим диаметром как бы проходит через цилиндр с большим диаметром. Если же диаметры одинаковые, то линия пересечения изображается прямыми линиями, имея форму эллипсов.


5.2 Построение пересечения поверхностей тел вращения с помощью вспомогательных секущих плоскостей.

Линии пересечения тел вращения обычно строят с помощью вспомогательных секущих плоскостей Р (рис. 19). Каждая плоскость пересекает одновременно оба тела вращения по соответствующим линиям. Эти линии пересекаются между собой в точках, определяющих линию пересечения заданных поверхностей. Количество вспомогательных плоскостей берется в зависимости от требуемой точности построения.


Еще один пример на рис. 20. Здесь рассматривается построение линии пересечения конуса и шара. Вспомогательные плоскости - фронтально-прецирующие плоскости N, R, Т, М.

Рис.20

Машиностроительное черчение, начертательная геометрия, инженерная графика