Курс лекций по теме Детали машин и основы конструирования

Машиностроительное черчение
Геометрическое черчение
Проекционное черчение
Изучение резьбовых соединений
Соединение деталей
Эскизы и рабочие чертежи деталей
Чтение и детелирование сборочного чертежа
Сборочный чертеж изделия
Графический редактор КОМПАС
Соединение деталей клейкой или пайкой
Начертательная геометрия
Техническая механика
Инженерная графика
Атомная энергетика
Электротехника
Расчет цепей постоянного тока
Метод узлового напряжения
Расчет цепей переменного тока
Пример расчета трехфазной цепи
Решение задач
Лабораторная работа
Лабораторные работы по ТОЭ
Исследование линейной электрической
цепи постоянного тока
Параллельная цепь переменного тока
Трехфазные нагрузочные цепи
Испытание однофазного трансформатора
Испытание генератора постоянного тока
Испытание асинхронного короткозамкнутого
двигателя
Испытание синхронного двигателя
Исследование переходных процессов
Линейная электрическая цепь второго порядка
Исследование полупроводниковых
выпрямителей
Трехфазные выпрямители
Характеристики и параметры биполярных
транзисторов
Исследование усилителя постоянного тока
Исследование усилителя низкой частоты
на транзисторе
Исследование управляемого тиристорного
выпрямителя
Исследование полупроводникового
стабилизатора напряжения
Исследование дешифраторов
Исследование электрических свойств
сегнетоэлектриков
Исследование свойств ферромагнитных
материалов
Температурная зависимость
сопротивления окислов металлов
Исследование электропроводности
полупроводниковых материалов
Математика
Лекции по математике

Вычислить несобственный интеграл

Дифференциальные уравнения (ДУ)

Степенные ряды

Неопределенный интеграл

Несобственный интеграл 1-го рода

Исследовать сходимость интеграла

Основные методы интегрирования

Метод интегрирования по частям

Вычисление площадей плоских фигур

Определенный интеграл и его приложения

Однородные уравнения

Условие Липшица

История искусства
Абстрактное искусство
Романская и готическая архитектура
Архитектура ренессанса
Нотер-Дам-де-Пари
Архитектура Италии
Русское деревянное зодчество
Русское барокко
Судьба советской архитектуры

Особенности геометрии и условий работы косозубых зубчатых передач. Зубья косозубых цилиндрических колес нарезают тем же инструментом, что и прямозубых. Ось червячной фрезы составляет с торцовой плоскостью колеса угол β (рис. 38). При нарезании фрезу перемещают по направлению зубьев колеса. Поэтому в нормальной к направлению зуба плоскости все его размеры – стандартные.

Рисунок 38 – Особенности косозубых колес

У пары сопряженных косозубых колес с внешним зацеплением углы β наклона линий зубьев равны, но противоположны по направлению. Если не предъявляют специальных требований, то колеса нарезают с правым направлением зуба, а шестерни — с левым.

У косозубого колеса (рис. 38) расстояние между зубьями можно измерить в торцовом, или окружном, (t – t) и нормальном (п – п) направлениях. В первом случае получают окружной шаг р, во втором – нормальный шаг р. Различны в этих направлениях и модули зацепления:

, (54)

где т и т– окружной и нормальный модули зубьев.

Согласно рис. 38:

, (55)

Следовательно:

, (56)

где β – угол наклона зуба на делительном цилиндре.

Нормальный модуль должен соответствовать стандарту.

В торцовой плоскости t — t косозубое колесо можно рассматривать как прямозубое с модулем т, и углом зацепления :

, (57)

Для колеса без смещения делительный d и начальный dw диаметры

, (58)

Помимо торцового перекрытия в косозубых передачах обеспечено и осевое перекрытие. Коэффициент осевого перекрытия:

, (59)

где рх – осевой шаг, равный расстоянию между одноименными точками двух смежных зубьев, измеренному в направлении оси зубчатого колеса (рис. 38).

Контактные напряжения при прочих равных условиях в косозубом зацеплении меньше по значению, чем в прямозубом.

Понятие об эквивалентном колесе. Как отмечалось, профиль косого зуба в нормальном сечении п – п (рис. 38) совпадает с профилем прямозубого колеса. Расчет косозубых колес ведут, используя параметры эквивалентного прямозубого колеса: т – модуль; zv– число зубьев.

Профиль зуба в этом сечении совпадает с профилем условного прямозубого колеса, называемого эквивалентным, (рис. 39) делительный диаметр dv которого dv = mnzv.

Рисунок 39 – Поперечное сечение косозубого колеса

Эквивалентное число зубьев:

, (60)

где z – действительное число зубьев косозубого колеса.

С увеличением угла β наклона линии зуба эквивалентные параметры возрастают, способствуя повышению прочности передачи.

Конические зубчатые передачи передают механическую энергию между валами с пересекающимися осями. Обычно Σ = 90° (рис. 40,а). Зацепление конических зубчатых колес можно рассматривать как качение делительных круговых конусов шестерни и колеса. Основные характеристики: углы делительных конусов δ1 и δ 2, внешнее конусное расстояние Re.

Линии пересечения боковых поверхностей зубьев с делительной конической поверхностью называют линиями зубьев. В зависимости от формы линии зуба различают передачи с прямыми зубьями (рис. 40,б), у которых линии зубьев проходят через вершину делительного конуса, и с круговыми зубьями (рис. 40,в), линии зубьев которых являются дугами окружности d0.

Конические колеса с круговыми зубьями характеризуют наклоном линии зуба в среднем сечении по ширине зубчатого венца. Угол βn наклона — острый угол между касательной в данной точке к линии зуба и образующей делительного конуса (рис. 40,в).

Разновидностью конических передач являются гипоидные передачи, у которых оси вращения зубчатых колес не пересекаются, а перекрещиваются.

Рисунок 40 –Конические зубчатые передачи

Геометрия конических зубчатых передач представлена на рис.41.

Рисунок 41 – Геометрия конических зубчатых колес

Конические зубчатые передачи необходимо регулировать, добиваясь совпадения вершин делительных конусов колес.

Угол Σ между осями зубчатых колес равен сумме углов делительных конусов (рис. 18.1):

, (61)

Достоинство конических передач – возможность передачи механической энергии между валами с пересекающимися осями.

Недостатками являются необходимость регулирования передачи (вершины делительных конусов должны совпадать), а также меньшая нагрузочная способность и большая сложность изготовления по сравнению с цилиндрическими передачами.

Внешние и внутренние торцы на конических зубчатых колесах формируют внешними и внутренними дополнительными конусами, образующие которых перпендикулярны образующей делительного конуса. Средний дополнительный конус расположен на равном расстоянии от внешнего и внутреннего дополнительных конусов.

Ширина b венца зубчатого колеса ограничена двумя дополнительными конусами – внешним и внутренним.

Длину отрезка образующей делительного конуса от его вершины до внешнего торца называют внешним конусным расстоянием Re, до середины ширины зубчатого венца – средним конусным расстоянием Rm (рис. 41).

Пересечения делительных конусов с дополнительными конусами определяют диаметры делительных окружностей конического зубчатого колеса. Различают внешний de, внутренний d, средний dm делительные диаметры.

Передаточное число. Согласно рис. 41 передаточное число:

, (62)

где de1, de2, dm1, dm2 и , – соответственно внешние, средние делительные диаметры и углы делительных конусов шестерни и колеса.

Для конической прямозубой передачи рекомендуют и=2...3; при колесах с круговыми зубьями и до 6,3.

Осевая форма зуба. Зубья конических колес в зависимости от изменения размеров их нормальных сечений по длине выполняют трех осевых форм (рис. 42):

осевая форма I– нормально понижающиеся зубья (рис. 42,а). Вершины конусов делительного и впадин совпадают, высота ножки зуба пропорциональна конусному расстоянию. Применяют для прямых зубьев, а также ограниченно для круговых при т ≥ 2мм и

, (63)

Рисунок 42 – Осевые формы зуба

осевая форма II– нормально сужающиеся зубья (рис. 42,б). Вершина конуса впадин расположена так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу пропорциональна конусному расстоянию. Эта форма обеспечивает оптимальную прочность на изгиб во всех сечениях, позволяет одним инструментом обрабатывать сразу обе поверхности зубьев колеса, что повышает производительность при нарезании зубчатых колес. Является основной для колес с круговыми зубьями. Применяют в массовом производстве;

осевая форма III – равновысокие зубья (рис. 42,в). Образующие конусов делительного, впадин и вершин параллельны. Высота зубьев постоянна по всей длине. Применяют для неортогональных передач с межосевым углом Σ<40° и круговыми зубьями при

, (64)

Основные геометрические соотношения. В конических зубчатых колесах с осевыми формами I и II высота зуба, а следовательно, и модуль зацепления увеличиваются от внутреннего к внешнему дополнительному конусу (рис. 41, 42). Для удобства измерения размеры конических колес принято определять по внешнему торцу зуба.

Максимальный модуль зубьев – внешний окружной модуль тte –получают на внешнем торце колеса.

Ниже приведены основные геометрические соотношения для конических зубчатых передач (рис. 41).

Внешнее конусное расстояние:

, (65)

Внешние делительные диаметры шестерни и колеса:

, (66)

Ширина зубчатого венца:

, (67)

Для большинства конических передач коэффициент ширины зубчатого венца .

Тогда:

, (68)

Среднее конусное расстояние:

, (69)

Из условия подобия (рис. 18.1) следует:

, (70)

Тогда средний делительный диаметр шестерни:

, (71)

Модуль окружной в среднем сечении:

, (72)

Модуль нормальный в среднем сечении для кругового зуба (=35°):

, (73)

Углы делительных конусов:

, (74)

Рисунок 43 – Эквивалентное колесо

Для конических зубчатых колес с прямыми зубьями в качестве расчетного принимают внешний окружной модуль mte, для конических зубчатых колес с круговыми зубьями – средний нормальный модуль тп в середине зубчатого венца.

На главную