Курс лекций по теме Детали машин и основы конструирования

Геометрические размеры венца червячного колеса. Зубья на червячном колесе чаще всего нарезают червячной фрезой, которая представляет собой копию червяка, с которым будет зацепляться червячное колесо. Только фреза имеет режущие кромки и несколько больший (на двойной размер радиального зазора в зацеплении) наружный диаметр.

Основные геометрические размеры венца червячного колеса определяют в среднем его сечении.

Делительный d2 и совпадающий с ним начальный dwi диаметр колеса при числе z2 зубьев (рис. 53):

, (94)

Рисунок 53 – Геометрия червячного колеса

Межосевое расстояние червячной передачи:

, (95)

Червячные передачи со смещением выполняют в целях обеспечения стандартного или заданного значения межосевого расстояния. Осуществляют это, как и в зубчатых передачах, смещением на (хт) фрезы относительно заготовки при нарезании зубьев колеса (рис. 53):

, (96)

Для стандартных редукторов aw: ...80, 100, 125, 140, 160,....

Для нарезания зубьев колес в передачах со смещением и без смещения используют один и тот же инструмент. Поэтому нарезание со смещением выполняют только у колеса.

При заданном межосевом расстоянии коэффициент смещения инструмента.

Значения коэффициента х смещения инструмента выбирают по условию неподрезания и незаострения зубьев. Предпочтительны положительные смещения, при которых одновременно повышается прочность зубьев колеса.

Рекомендуют для передач с червяком:

– эвольвентным 0 ≤ х ≤ 1 (предпочтительно х = 0,5);

– образованным тором 1,0 ≤ х ≤ 1,4 (предпочтительно x:= 1,1–1,2).

Диаметр вершин зубьев (рис. 53):

, (97)

Диаметр впадин зубьев:

, (98)

Наибольший диаметр червячного колеса:

, (99)

где k = 2 для передач с эвольвентным червяком; k = 4 для передач, нелинейчатую поверхность которых образуют тором.

Ширина  венца червячного колеса зависит от числа витков червяка:

 при z=1 или 2,

 при z =4, (100)

Червячное колесо является косозубым с углом у w наклона зуба.

Условный угол 2δ обхвата для расчета на прочность находят по точкам пересечения окружности диаметром (dal – 0,5т) с линиями торцов венца червячного колеса.

Кинематика передачи. Передаточное число и червячной передачи определяют по условию, что за каждый оборот червяка колесо поворачивается на угол, охватывающий число зубьев колеса, равное числу витков червяка.

Полный оборот колесо совершает за z2 и  оборотов червяка:

, (101)

где , п2 – частоты вращения червяка и колеса;

d и d2 — делительные диаметры червяка и колеса;

γ1 – делительный угол подъема линии витка;

 и z2 – число витков червяка и число зубьев колеса.

Во избежание подреза основания ножки зуба в процессе нарезания зубьев принимают z2 ≥ 26. Оптимальным является z2 =32...63. Для червячных передач стандартных редукторов пе­редаточные числа выбирают из ряда: ...31,5; 40; 50; 63; 80

Точность червячных передач. Для червячных передач установлены 12 степеней точности, для каждой из которых предусмотрены нормы кинематической точности, нормы плавности и нормы контакта зубьев и витков. В силовых передачах наибольшее применение имеют 7–я (vCK ≤ 10 м/с), 8–я (vCK ≤ 5 м/с) и 9–я (vCK ≤ 2 м/с) степени точности.

КПД червячной передачи. Роль смазывания в червячной передаче еще важнее, чем в зубчатой, так как в зацеплении происходит скольжение витков червяка вдоль контактных линий зубьев червячного колеса.

КПД червячного зацепления определяют по формуле:

, (102)

где γw – угол подъема винтовой линии;

φ' – приведенный угол трения;

f'= tgφ' – приведенный коэффициент трения (коэффициент трения, найденный с учетом угла а профиля витка).

Значения угла φ' трения в зависимости от скорости скольжения получают экспериментально для червячных передач на опорах с подшипниками качения, т.е. в этих значениях учтены потери мощности в подшипниках качения, в зубчатом зацеплении и на размешивание и разбрызгивание масла. Величина φ' снижается при увеличении vCK, так как при больших скоростях скольжения в зоне контакта создаются благоприятные условия для образования масляного слоя, разделяющего витки червяка и зубья колеса и уменьшающего потери в зацеплении.

Численное значение  увеличивается с ростом угла γw подъема на начальном цилиндре до γw 40° (рис. 57).

Обычно в червячных передачах γw ≤ 27°. Большие углы подъема выполнимы в передачах с четырех–заходным червяком и с малыми передаточными числами.

Рисунок 57 – График зависимости КПД от угла γw

Червячные передачи имеют сравнительно низкий КПД, что ограничивает область их применения (= 0,75...0,92).

Силы в зацеплении. Силу взаимодействия червяка и колеса принимают сосредоточенной и приложенной в полюсе зацепления по нормали к рабочей поверхности витка. Ее задают тремя взаимно перпендикулярными составляющими: Ft Fa, Fr. Для наглядности изображения сил червяк и червячное колесо на рис. 58, а условно выведены из зацепления.

Окружная сила Ft2 на червячном колесе:

, (103)

где Т2 – вращающий момент на червячном колесе, Н·м;

d2 – делительный диаметр колеса, мм.

Осевая сила Fal на червяке численно равна Ft2 :

, (104)

Окружная сила Ft1 на червяке:

, (105)

где  – вращающий момент на червяке, Н·м;

 * – КПД, dw1 – в мм.

Осевая сила Fa2 на червячном колесе численно равна Ft1 :

, (106)

Радиальная сила Fr1 на червяке (радиальная сила Fr2 на колесе численно равна Fr1), рис. 58,б:

, (107)

Направление силы Ft2 всегда совпадает с направлением вращения колеса, а сила Ftl направлена в сторону, противоположную вращению червяка.

Рисунок 58 – Силы, действующие в червячном зацеплении

На главную