Курс лекций по теме Детали машин и основы конструирования

Машиностроительное черчение
Геометрическое черчение
Проекционное черчение
Изучение резьбовых соединений
Соединение деталей
Эскизы и рабочие чертежи деталей
Чтение и детелирование сборочного чертежа
Сборочный чертеж изделия
Графический редактор КОМПАС
Соединение деталей клейкой или пайкой
Начертательная геометрия
Техническая механика
Инженерная графика
Атомная энергетика
Электротехника
Расчет цепей постоянного тока
Метод узлового напряжения
Расчет цепей переменного тока
Пример расчета трехфазной цепи
Решение задач
Лабораторная работа
Лабораторные работы по ТОЭ
Исследование линейной электрической
цепи постоянного тока
Параллельная цепь переменного тока
Трехфазные нагрузочные цепи
Испытание однофазного трансформатора
Испытание генератора постоянного тока
Испытание асинхронного короткозамкнутого
двигателя
Испытание синхронного двигателя
Исследование переходных процессов
Линейная электрическая цепь второго порядка
Исследование полупроводниковых
выпрямителей
Трехфазные выпрямители
Характеристики и параметры биполярных
транзисторов
Исследование усилителя постоянного тока
Исследование усилителя низкой частоты
на транзисторе
Исследование управляемого тиристорного
выпрямителя
Исследование полупроводникового
стабилизатора напряжения
Исследование дешифраторов
Исследование электрических свойств
сегнетоэлектриков
Исследование свойств ферромагнитных
материалов
Температурная зависимость
сопротивления окислов металлов
Исследование электропроводности
полупроводниковых материалов
Математика
Лекции по математике

Вычислить несобственный интеграл

Дифференциальные уравнения (ДУ)

Степенные ряды

Неопределенный интеграл

Несобственный интеграл 1-го рода

Исследовать сходимость интеграла

Основные методы интегрирования

Метод интегрирования по частям

Вычисление площадей плоских фигур

Определенный интеграл и его приложения

Однородные уравнения

Условие Липшица

История искусства
Абстрактное искусство
Романская и готическая архитектура
Архитектура ренессанса
Нотер-Дам-де-Пари
Архитектура Италии
Русское деревянное зодчество
Русское барокко
Судьба советской архитектуры

Подшипники качения

Подшипником называют опору или направляющую, определяющую положение движущихся частей по отношению к другим частям механизма. Подшипники, работающие преимущественно на движение с трением качения, называют подшипниками качения, а на движение с трением скольжения — подшипниками скольжения. Подшипник качения включает в себя детали с дорожками качения и тела качения.

Достоинства подшипников качения.

1. Полная взаимозаменяемость, готовность к эксплуатации без дополнительной подгонки или приработки.

2. Малые осевые размеры, простота монтажа и эксплуатации.

3. Малая потребность в смазочном материале. Подшипники с защитными шайбами заполняют пластичным смазочным материалом при изготовлении. Этого запаса хватает на весь срок работы.

4. Малые потери на трение, особенно при трогании с места и невысоких частотах вращения, незначительный нагрев при работе.

5. Малое использование дефицитных цветных металлов при изготовлении. 6. Малая стоимость изготовления в связи с массовым производством.

Недостатки подшипников качения.

1. Большие радиальные размеры.

2. Малая жесткость.

3. Большое сопротивление вращению, шум и низкая долговечность при высоких частотах вращения.

4. Чувствительность к ударным и вибрационным нагрузкам.

Применение. Подшипники качения являются основным видом опор в машинах: в легковом автомобиле более 30 типоразмеров подшипников, в грузовом автомобиле — более 120, в самолете — бо­лее 1000 и т.д.

Классификация подшипников качения. Подшипники качения передают силы между валом и корпусом при относительном их вращении. Нагружающие подшипник силы подразделяют на:

– радиальную, действующую в направлении, перпендикулярном оси подшипника;

– осевую, действующую в направлении, параллельном оси подшипника.

Подшипники качения классифицируют по следующим основным признакам:

по форме тел качения (рис. 82) — шариковые (а) и роликовые (б — з), причем последние могут быть с роликами: цилиндрическими короткими (б), длинными (в) и игольчатыми (г), а также бочкообразными (д), коническими (е), бомбинированными (ж) — с небольшой (7–30 мкм на сторону) выпуклостью поверхности качения (бомбиной) и витыми (з) – пустотелыми;

по направлению воспринимаемой нагрузки – радиальные, предназначенные для восприятия радиальных сил; некоторые типы могут воспринимать и осевые силы; радиально–упорные — для восприятия радиальных и осевых сил; подшипники регулируемых типов без осевой силы работать не могут; упорные — для восприятия осевых сил; радиальную силу не воспринимают; упорно–радиальные — для восприятия осевых и небольших радиальных сил;

по числу рядов тел качения — одно–, двух– и четырехрядные;

по основным конструктивным признакам — самоустанавливающиеся (например, сферические самоустанавливаются при угловом смещении осей вала и отверстия в корпусе) и несамоустанавливающиеся; с цилиндрическим или конусным отверстием внутреннего кольца, сдвоенные и др.

Рисунок 82 – Виды тел качения подшипников

Назначение основных деталей подшипника. На рис. 83 показано осевое сечение шарикового радиального однорядного подшипника. Основные детали подшипника:

1 — внутреннее кольцо с диаметром d отверстия; 2 — наружное кольцо; D — наружный диаметр подшипника; 3 — тело качения — шарик; Dw — диаметр тела качения; 4 — сепаратор; охватывает тела качения и перемещается вместе с ними.

Кольца подшипников имеют желоба (канавки), служащие направляющими для тел качения.

Сепаратор (см. сечения А–А и Б–Б на рис. 30.2) предназначен для направления, удержания тел качения в определенном положении (с целью обеспечения соосности колец) и для разделения тел качения от их непосредственного контакта (с целью уменьшения изнашивания и потерь на трение). При невысоких частотах вращения и при качательном движении применяют подшипники без сепараторов (например, подшипники крестовин карданных валов).

Рисунок 83 – Осевое сечение шарикового радиального однорядного подшипника

Основное применение имеет змейковый сепаратор, состоящий из двух волнистых кольцеобразных полусепараторов, соединенных между собой заклепками; в быстровращающихся узлах и подшипниках высокой точности применяют массивные сепараторы (цельные или составные), обеспечивающие более точное положение тел качения относительно колец подшипников.

Посадки колец подшипников. Различают три случая нагружения колец подшипников:

циркуляционное – кольцо вращается относительно линии действия нагрузки;

местное – кольцо неподвижно относительно линии действия нагрузки;

колебательное – кольцо не совершает полного оборота относительно линии действия нагрузки.

При циркуляционном погружении соединение колец с валом или корпусом должно быть выполнено обязательно с натягом, исключающим проворачивание и обкатывание кольцом сопряженной детали. При недостаточном натяге и циркуляционном нагружении между кольцом и посадочной поверхностью может появиться зазор в разгруженной зоне, что приводит к обкатыванию кольцом сопряженной поверхности, ее развальцовке, контактной коррозии, истиранию, снижению точности вращения и разбалансировке.

При местном нагружении применяют посадки, допускающие небольшой зазор. Обкатывания кольцами сопряженных деталей при таком нагружении не происходит, а нерегулярное проворачивание невращающегося кольца полезно, так как меняется положение его зоны нагружения, что способствует повышению долговечности подшипника. Кроме того, такое сопряжение облегчает осевые перемещения колец при монтаже, при регулировании зазоров в подшипниках и при температурных деформациях.

Посадки подшипников отличаются от обычных расположением и значением полей допусков на посадочные поверхности колец. Подшипник является основным комплектующим изделием, не подлежащим в процессе сборки дополнительной доводке. Требуемые посадки в соединении колец получают назначением соответствующих полей допусков на диаметры вала или отверстия в корпусе (рис. 84).

Интенсивность нагружения подшипникового узла оценивают отношением эквивалентной нагрузки Р к базовой динамической грузоподъемности С.

В соответствии с этим различают режимы нагружения:

легкий – ;

нормальный –;

тяжелый – .

Режимам с большими значениями отношения Р/С должны соответствовать более плотные посадки. Роликовые подшипники работают, как правило, при больших нагрузках, поэтому и посадки роликоподшипников более плотные, чем шарикоподшипников.

Рисунок 84 – Требуемые посадки в соединении колец подшипников

На главную