Курсовая работа Геометрическое черчение Проекционное черчение Изучение резьбовых соединений Соединение деталей Эскизы и рабочие чертежи деталей Техническая механика Контрольная работа №3 по инженерной графике

Типовые задачи по начертательной геометрии и методы их решений. Контрольная

Лекция 6

ПРЕОБРАЗОВАНИЕ ИЗОБРАЖЕНИЙ. ЧЕТЫРЕ ОСНОВНЫЕ ЗАДАЧИ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Для упрощения решения метрических, а также некоторых позиционных задач могут применяться методы, позволяющие переходить от задания фигур общих положений к частным. Эти методы основываются на двух принципах:

замещение системы плоскостей проекций на новую систему плоскостей, в которой неподвижный геометрический объект занимает какое-либо частное положение (способ замены плоскостей проекций);

перемещение геометрического объекта в пространстве таким образом, чтобы он занял какое-либо частное положение в неподвижной системе плоскостей проекций (способ вращения).

В зависимости от расположения оси в пространстве, вокруг которой вращается геометрический объект, различают следующие виды способа вращения:

вращение вокруг линии уровня;

вращение вокруг проецирующей прямой;

плоско-параллельное перемещение.

Эти способы преобразования включают в себя четыре основные задачи начертательной геометрии:

Преобразование комплексного чертежа таким образом, чтобы прямая общего положения стала линией уровня.

Преобразование комплексного чертежа таким образом, чтобы линия уровня стала проецирующей прямой.

Преобразование комплексного чертежа таким образом, чтобы плоскость общего положения стала проецирующей плоскостью уровня.

Преобразование комплексного чертежа таким образом, чтобы проецирующая плоскость стала плоскостью уровня.

5.1. Метод замены плоскостей проекций

Сущность этого метода заключается в том, что проецируемый объект не изменяет своего положения в пространстве, а заменяется система плоскостей проекций. Может быть заменена одна, две и более плоскостей. Замена производится до тех пор, пока геометрический объект не займет частное положение относительно новой плоскости проекций. При этом новая плоскость должна быть перпендикулярна оставшейся «старой» плоскости проекций.

Возьмем точку А, расположенную в ортогональной системе плоскостей проекций , и повернем вокруг нее горизонтальную плоскость проекций P1 в положение , получив таким образом новую ортогональную систему плоскостей проекций . При этом должно соблюдаться следующее условие:

Расстояние от точки до «старой» плоскости проекций в новой системе плоскостей проекций должно остаться неизменным.


Рис. 5.1

 


1 основная задача. Преобразованием прямой общего положения в прямую уровня можно определить:

натуральную длину отрезка;

углы наклона прямой к плоскостям проекций.

Рис. 5.2


На главную